TEORIA GRACELI DOS SISTEMAS, E TOPOLOGIA ALGÉBRICA DOS SISTEMAS.


SISTEMAS ALEATÓRIOS, 

SISTEMAS DIMENSIONAIS.

SISTEMAS DIMENSIONAIS , DAS DIMENSÕES  DE GRACELI.

SISTEMAS DE COORDENADAS.

DE TENSORES,

HARMÔNICOS.

HARMÔNICOS ESFÉRICOS.

UNIFORMES E PROGRESSIVOS UNIFORMES.  [PRINCÍPIO DA UNIFORMIDADE].

[IMAGINE UM BALÃO QUE CRESCE PARTE COM MAIOR  ACELERAÇÃO DO QUE OUTRA, MAS MANTÉM UMA PROPORCIONALIDADE ENTRE AS ACELERAÇÕES DE CRESCIMENTO.

 SISTEMAS DE ORDEM E DESORDEM [ONDE TODA DESORDEM OBEDECE UMA ORDDEM NO INÍCIO, MEIO E FIM].

SISTEMAS TRANSFORMATIVOS.

DE INTERAÇÕES.

 DE PÊNDULOS.

DE ESTRUTURAS MOLECULARES.

QUÍMICOS E DE PROCCESSOS E ESTRUTURAS BIOLOGICAS E DE GENES.

SISTEMAS QUÂNTICOS.

E OUTROS.



Representações visuais dos primeiros harmônicos esféricos. Partes em azul e amarelo representam, respectivamente, as regiões nas quais a função é positiva e negativa.

Em matemática e ciência física, harmónicos esféricos são funções harmónicas que representam a variação espacial de um conjunto ortogonal de soluções da equação de Laplace, quando a solução é expressa em coordenadas esféricas.

Os harmónicos esféricos são importantes em muitas aplicações teóricas e práticas, particularmente em física atómica (uma vez que a função de onda do electrão contém harmónicos esféricos) e na teoria do potencial, tanto no campo gravitacional como na eletrostática.

Introdução

Harmónicos esféricos de variável real Ylm, para l =0,...,4 (de cima para baixo) e m = 0,...,4 (da esquerda para a direita). Os harmónicos Yl-m com m negativo são idênticos, mas com uma rotação de 90º/m em torno do eixo z em relação aos harmónicos positivos.

equação de Laplace em coordenadas esféricas é dada por:

(Ver também Nabla e laplaciano em coordenadas esféricas). Se nesta expressão considera-se soluções específicas da forma , a parte angular Y é chamada harmónico esférico e satisfaz a relação

Se, por sua vez, utiliza-se o método de separação de variáveis para esta equação, pode-se ver que a equação acima admite soluções periódicas nas duas coordenadas angulares (l é um inteiro). Logo, a solução periódica do sistema anterior depende de dois inteiros (l, m) e é dada em termos de funções trigonométricas e dos polinômios associados de Legendre:

Onde:  é chamada de função harmónica esférica de grau  e ordem  é o polinómio associado de Legendre é uma constante de normalização; e  e  representam os parâmetros angulares (respectivamente, o ângulo azimutal ou colatitude e o ângulo polar ou longitude).

As coordenadas esféricas utilizadas neste artigo são consistentes com àquelas usadas pelos físicos, mas diferem das utilizadas pelos matemáticos (ver coordenadas esféricas). Em particular, a colatitude , ou ângulo polar, assume valores de  e a longitude , ou azimute, está na faixa de . Portanto,  é nulo no Pólo Norte,  no Equador e  no Pólo Sul.

Quando a equação de Laplace é resolvida em coordenadas esféricas, as condições de periodicidade na fronteira da coordenada  e as condições de regularidades nos "Pólos Norte e sul" da esfera condizem com o que foi dito que os números l e m necessários devem ser inteiros que satisfazem  e .




Image result for gifs de química




Comentários

Postagens mais visitadas deste blog